
Report from the Inter-Agency
Workshop on HPC Resilience

John T. Daly

Workshop overview
•  3½ day workshop focused on technical challenges of coordinated

HPC resilience strategies in the exascale timeframe
•  30 participants: system hardware, system software, application

developers and users, algorithms and libraries, file systems, I/O and
storage, visualization and data analytics

•  Highly interactive format
–  problem solving teams of not more than 10 persons each
–  collaboratively develop a plan and roadmap for implementing

resilience
•  Assessed current capabilities, gaps and dependencies for

representative applications from “predictive science” (e.g., PDE)
and “not predictive science” (e.g., big data) domains

•  Created “proof of concept” resilience strategies and an R&D
roadmap for a coordinated resilience framework

Goals of the workshop
•  Resilience is about keeping the application workload running to a

correct solution in a timely and efficient manner in spite of frequent
hard (i.e., unrecoverable) and soft (i.e., recoverable) errors

•  Demonstrate both the need for and existence of practical resilience
strategies that address the future needs of the application via the
resources available to the system

•  Create a technical strategy and roadmap for addressing resilience in
the exascale timeframe
–  What are our requirements? What “needs” to work and what can we do

without?
–  How are we going to meet those requirements?

•  Goals of the workshop DO NOT include…
–  Discussion of our current projects or research interests
–  Creating new research opportunities
–  Figuring out how to get funding for future work

Programmatic considerations
•  Resilience strategy should not be minimalist or ad hoc, but neither

can we afford a “Cadillac” solution
•  If we cannot come up with a credible plan for how we intend to

integrate all the pieces then mission is likely to view resources
expended on resilience as wasted

•  If we ask for the kitchen sink we will end up with nothing; if we
short-sell we still end up with nothing not too small; not too big;
just right!

•  We need…
–  undistracted focus on a “no frills” yet “robust” resilience strategy
–  clear delineation between engineering (what we know how to do) and
research (what we need to figure out)

•  Apply Occam’s Razor simplest is best
•  I don’t care if it’s an interesting research question; all I care is if I

need to figure it out in order to implement a resilience strategy!

Sample “marching orders”
•  Working group sessions will be a single assignment divided somewhat

arbitrarily into two assignments
•  Make as much progress as you can on every part of the assignment; don’t

get stuck – identify open issues; move on
•  Start with a simple model for resilience; as time, expertise and resources

permit then refine your solutions
•  Resilience loves anecdotes and anecdotes are all about the edge cases and

extremes use best engineering judgment to focus on middle of the
distribution and not the tails

•  Focus on high importance items and “low hanging fruit”; do NOT get
distracted by “bright shiny objects” (e.g., better ECC)

•  Make it in the context of stated (previous day) application requirements
–  Convert more hard errors into soft errors
–  Provide for reliable and unreliable execution regions
–  Empower the application to make some decisions, without negatively

impacting the aggregate system workload

Summary of workshop conclusions
•  The number of errors, particularly soft errors, occurring on HPC

systems will continue to increase
•  A right-sized, well-conceived resilience strategy in the exascale

timeframe is more cost effective than continuing to rely on ad-hoc
resilience solutions

•  Must at a minimum provide for a resilience infrastructure that
facilitates
–  System management of hard errors by effectively “converting” them to

soft errors whenever feasible
–  Application management of soft errors through interfaces that allow it

simple controls over how and when to respond to errors
•  Such a framework is foundational to a deployable and sustainable

HPC resilience strategy in the exascale timeframe
•  Priorities for R&D in the exascale timeframe: fault characterization,

detection, FT algorithms, FT programming models and tools

Priority: Fault characterization
•  Reliability will get worse with deeply scaled

process technologies creating new modes of
failure

•  Based on anticipated technology trends, the
HPC community needs to develop a useful
taxonomy for describing
–  the types of faults that future systems are expected

to encounter
–  their anticipated frequency and impact

Priority: Detection
•  In the exascale timeframe, error “recovery” will

likely be manageable using known techniques for
local checkpointing

•  Fault “prediction” is probably too hard a problem
to realistically tackle in this timeframe

•  The research focus needs to be error “detection”
which requires the system and application to work
together in a coordinated fashion

•  Industry is not going to solve this problem for the
HPC community

Priority: FT Algorithms
•  Three classes of algorithms were identified

a)  those that are embarrassingly fault-tolerant
b)  those that are not fault-tolerant but are self-

checking
c)  those that are neither fault-tolerant nor self-

checking
•  Most algorithms currently in class (c) could be

moved to class (b) or even class (a) by a
moderate R&D investment

Priotity: FT programming models
•  Resilience would benefit strongly from a

programming model that supports some notion of
–  transactions in time (e.g., roll-back and recovery)
–  transactions in space (e.g., fault containment domains)

•  An uncomplicated, directive-based interface us-
ing a handful of assertions (e.g., create persistent
memory domains, allocate “reliable” and
“unreliable” code regions, etc.) provides most of
the necessary interfaces for implementing
application fault-tolerance

Priority: Tools
•  Resilience lacks a mature, validated test

infrastructure to verify the effectiveness of
various resilience strategies for keeping the
application running in the face of high rates of
hard and soft errors

•  Fault injection tools are need in particular to
simulate all classes of faults

•  Models will be required to support the fault
testing infrastructure at scale

